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Abstract
This article deals with algorithmic investigation of a gate-type quantum computer that com-

prises the following quantum gates: Controlled-Z, Rx(φ), Ry(φ) and Rz(φ) for φ = ±π/4, ±π/2, π 

(hereinafter our potential computer). We investigate two topics. The first topic is to check whether 

our potential computer is a universal quantum computer or not by reviewing and following the 

procedures in Nielsen and Chuang[1]. We can confirm that our gate set is equivalent to the ultimate 

universal set of gates in quantum computing. The availability of the ultimate set makes it possible 

to construct an arbitrary unitary matrix, the key to implement a universal quantum computer; 

thus, our potential computer proves to be universal. The second topic is to review to what extent 

our potential quantum computer could be useful from a viewpoint of its availability to solve a 

real problem, in comparison to a classical one. We can also confirm t hat o ur p otential computer 

can implement the Deutsch-Jozsa algorithm[2] (or DJA for short). DJA makes it possible to solve 

a certain problem in much less steps than classical computing; thus, our potential computer is 

confirmed to possess quantum advantage.
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I. INTRODUCTION

A. Problems

The general concern of KH, the primary author of this article, is that if we plan to imple-

ment a gate-type quantum computer that is supposed to embody a certain set of operation
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gates, it is important studying the computer from a viewpoint of quantum information pro-

cessing (or QIP for short) algorithm at the same time as producing tangible things. Here,

let us suppose the computer to embody the following quantum gates: Controlled-Z, Rx(φ),

Ry(φ) and Rz(φ) for φ = ±π/4,±π/2, π. The definitions of these gates are detailed later,

and hereinafter we call such computer our potential computer. In particular, the assessment

of our potential computer’s availability to solve a problem is, among other things, vital and

should be done prior to any processing activities. This article focuses on the assessment.

Other algorithmic investigations, e.g., the development of an efficient QIP code and the

development of an error correction code, taking into account the physical characteristics of

the computer, may follow the assessment study.

B. Questions/Aims

We have two aims for the assessment of our gate-type computer’s potential availability

to solve a problem.

The first aim is to confirm its universality. A gate-type quantum computer is said to

possess universality if it is verified to be able to perform arbitrary unitary transformations on

internal data. An arbitrary unitary transformation is made possible if a quantum computer

embodies an arbitrary single-qubit gate and a CNOT gate as well[1]. In case that our

quantum computer could not embody a full set of these gates, there still might be a possibility

of it being able to solve some limited types of problems, though.

The second aim is to understand its practicality. Assuming that our potential computer

will prove to be universal in the first half of this article, to what extent our potential quantum

computer could be useful in a practical point of view, i.e., how good it is in comparison to

a classical computer in terms of solving a real problem.

C. Questions/Objectives

We set two objectives corresponding to the two aims, respectively.

The first objective is concerning universality, and we examine whether our potential

computer embodies “the π/8 gate”, phase gate, Hadamard gate, and CNOT gate or not (to

be mentioned in Section II A).
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Organisation of II A is as follows: giving a simple definition of the gate-type quantum

information processing in a bit conceptual manner, followed by introducing the concept of

a universal set of operations or gates, then reviewing in detail how to obtain the ultimate

universal set comprising “the π/8 gate”, phase gate, Hadamard gate, and CNOT gate. Now,

having had these fundamental concepts, we examine our potential computer’s universality,

to confirm it.

The second objective is concerning practicality, and we plan to verify that our poten-

tial computer can exhibit quantum advantage. To this end, we demonstrate that ours can

implement the Deutsch-Jozsa algorithm[2] (or DJA for short). DJA is an algorithm that

is introduced to solve a certain problem (to be mentioned in Section II B), and the algo-

rithm can only be implemented using the theoretical framework of quantum information

processing, i.e., a classical computer cannot implement it. Quantum advantage is the po-

tential ability of a quantum computer to solve problems faster than a classical computer

do[4] while quantum supremacy is the potential ability to solve those that cannot be done

practically by a classical computer[5].

Organisation of II B is as follows: defining a problem to be tackled, followed by introducing

DJA and reviewing how DJA makes it possible solve the problem in much less number of

steps, then confirming that DJA can be implemented with our potential computer.

The successful implementation of DJA is understood as a successful demonstration of a

quantum advantage. This advantage is among those characteristics that help to affirm that

a quantum computer is superior to a classical counterpart. The implementation of DJA

requires the Hadamard gate, which is also a centerpiece of the whole quantum information

processing.

Throughout this article, terms operation and gating, and operator and gate are used

interchangeably, respectively.

II. RESULTS

A. Universality of our potential computer

1. Definition of the gate-type quantum information processing

A gate-type quantum computer (of n-qubit) is defined as follows[1, 3]:
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a. It has a register that holds 2n complex numbers, where each qubit has two complex

numbers.

b. It changes the contents of the register (= n-qubit state) by carrying out unitary

operations repeatedly on the original register using 2n× 2n complex unitary matrices until

the intended register is obtained.

c. It measures the contents of the intended register, to produce a real number and the

intended register is projected onto one computational basis associated with the real number.

This is represented by measurement of a measurement operator Mm(≡ |m〉〈m|, where |m〉

is one computational basis) with respect to the intended n-qubit state: We obtain the

probability of the state being found in the specific state |m〉.

The proceeding chapters deal with the issues regarding (II A 1 b) above. The author

follows the mathematical notations, e.g., tensor representation, in particular, found in the

notable references [1, 6–9].

2. A universal set of gates for quantum computation

As mentioned above, QIP is basically a repetition of 2n × 2n unitary operations on the

original n-qubit state. A quantum computer might be appreciated well if it is specially built

to solve some specific problem and embody all the necessary 2n × 2n unitary operators or

gates to solve it. We, however, tend to like to have the type of quantum computer that is

available to solve any problems given. Otherwise, we will build different quantum computers

for different problems one by one. Here the concept of a universal set of gates or a universal

quantum computer came in. Details of the universal sets are described below.

3. Towards the ultimate universal set of gates

If a set of gates (referring to quantum gates in this writing) can be equivalent to an

arbitrary gate, i.e., the set is capable to replace the arbitrary gate, the set is said to be

universal for quantum computation. A quantum computer equipped with a universal set of

gates is then called a universal quantum computer. In the following, three universal sets α,

β and γ are explained. The three sets relate to others in that the set-α is decomposed to

the set-β and the set-β is further decomposed to the set-γ. What should be noted is that
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the set-γ is not exactly equivalent to the set-β. The set-β is approximated to the set-γ to

arbitrary accuracy, instead. The set-γ is called the ultimate universal set of gates.

a. set-α : two-level unitary operations

The target is to verify that an arbitrary unitary matrix with an arbitrary size is decom-

posed to two-level unitary matrices.

Start with an arbitrary 3× 3 unitary matrix U (3):

U (3) ≡


a d g

b e h

c f j

 . (1)

Our strategy is to find three unitary matrices U (3)
1 , U

(3)
2 , U

(3)
3 such that

U
(3)
3 U

(3)
2 U

(3)
1 U (3) = Ĩ . (2)

For if Eq.(2) holds, U (3) is then decomposed as

U (3) = U
(3)
1

−1
U

(3)
2

−1
U

(3)
2

−1
= U

(3)
1

†
U

(3)
2

†
U

(3)
2

†
. (3)

Now we can explain that the two-level unitary matrices do this job. A two-level unitary

matrix is one that acts non-trivially on two-or-fewer vector components. First, take a first

two-level unitary matrix U (3)
1 as

U
(3)
1 =




a∗

A3

b∗

A3
0

b
A3

−a
A3

0

0 0 1

 , A3 =
√

|a|2 + |b|2 (for b 6= 0)

Ĩ(3) (for b = 0).

(4)

Thus,

U
(3)
1 U (3) =


A3

a∗d+b∗e
A3

a∗g+b∗h
A3

0 bd−ea
A3

bg−ah
A3

c f j

 (5)

≡


a′ d′ g′

0 e′ h′

c′ f ′ j′

 . (6)
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While the deviations of Eq.(5) and Eq.(6) are done for b 6= 0, Eq(6) holds for b = 0, either.

Next, take a second two-level unitary matrix U (3)
2 as

U
(3)
2 =




a′∗

A′
3
0 c′∗

A′
3

0 1 0

c′

A′
3
0 −a′

A3

 , A′
3 =

√
|a′|2 + |c′|2 (for c′ 6= 0)

Ĩ(3) (for c′ = 0).

(7)

Thus,

U
(3)
2

(
U

(3)
1 U (3)

)
=


a′∗

A′
3
0 c′∗

A′
3

0 1 0

c′

A′
3
0 −a′

A3



a′ d′ g′

0 e′ h′

c′ f ′ j′

 =


A′

3
a′∗d′+c′∗f ′

A′
3

a′∗g′+c′∗j′

A′
3

0 e′ h′

0 c′d′−a′f ′
A′

3

c′g′−a′j′
A′

3

 . (8)

Here, by recalling the unitarity of U (3)
2

(
U

(3)
1 U (3)

)
, the most RHS of Eq.(8) further reduces

to

=⇒


1 0 0

0 e′ h′

0 c′d′−a′f ′
A′

3

c′g′−a′j′
A′

3

 ≡


1 0 0

0 e′′ h′′

0 f ′′ g′′

 . (9)

Finally, if we take U (3)
3 as

U
(3)
3 ≡

(
U

(3)
2

(
U

(3)
1 U (3)

))†
=


1 0 0

0 e′′∗ f ′′∗

0 h′′∗ g′′∗

 , (10)

clearly we have

U
(3)
3

(
U

(3)
2

(
U

(3)
1 U (3)

))
= Ĩ . (11)

U
(3)
3 is another two-level unitary matrix. We have just verified Eq.(3): An arbitrary 3 × 3

unitary matrix U (3) is decomposed to multiplications of three 3×3 two-level unitary matrices.

The next is regarding an arbitrary 4× 4 unitary matrix U (4):

U (4) ≡


a d g ε

b e h η

c f j θ

α β γ δ

 . (12)
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We take the procedures similar to the case of U (3). First, take a first two-level unitary matrix

U
(4)
1 as

U
(4)
1 =




a∗

A4

b∗

A4
0 0

b
A4

−a
A4

0 0

0 0 1 0

0 0 0 1

 , A4 =
√

|a|2 + |b|2 (for b 6= 0)

Ĩ(4) (for b = 0).

(13)

Thus,

U
(4)
1 U (4) =


A4

a∗d+b∗e
A4

a∗g+b∗h
A4

a∗ε+b∗η
A4

0 bd−ea
A4

bg−ah
A4

bε−aη
A4

c f j θ

α β γ δ

 (14)

≡


a′ d′ g′ ε′

0 e′ h′ η′

c′ f ′ j′ θ′

α′ β′ γ′ δ′

 . (15)

A quick reminder: as in Eq.(5) and Eq.(6) regarding U (3), while the deviations of Eq.(14)

and Eq.(15) are done for b 6= 0, Eq(15) holds for b = 0, either.

Next, take a second two-level unitary matrix U (4)
2 as

U
(4)
2 =




a′∗

A′
4
0 c′∗

A4
0

0 1 0 0

c′

A′
4
0 −a′

A′
4

0

0 0 0 1

 , A′
4 =

√
|a′|2 + |c′|2 (for c′ 6= 0)

Ĩ(4) (for c′ = 0)

(16)
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, to have

U
(4)
2

(
U

(4)
1 U (4)

)
=


A′

4
a′∗d′+c′∗f ′

A′
4

a′∗g′+c′∗j′

A′
4

a′∗ε′+c′∗θ′

A′
4

0 e′ h′ η′

c c′d′−a′f ′
A′

4

c′g′−a′j′
A′

4

c′ε′−a′θ′
A′

4

α′ β′ γ′ δ′

 (17)

≡


a′′ d′′ g′′ ε′′

0 e′′ h′′ η′′

0 f ′′ j′′ θ′′

α′′ β′′ γ′′ δ′′

 . (18)

Further, take a third two-level unitary matrix U (4)
3 as

U
(4)
3 =




a′′∗

A′′
4

0 0 α′′∗

A′′
4

0 1 0 0

0 0 1 0

α′′

A′′
4

0 0 −a′′
A′′

4

 , A′′
4 =

√
|a′′|2 + |α′′|2 (for α′′ 6= 0)

Ĩ(4) (for α′′ = 0)

(19)
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, to have

U
(4)
3

(
U

(4)
2

(
U

(4)
1 U (4)

))
=


A′′

4
a′′∗d′′+α′′∗β′′

A′′
4

a′′∗g′′+α′′∗γ′′

A′′
4

a′′∗ε′′+α′′∗δ′′

A′′
4

0 e′′ h′′ η′′

0 f ′′ j′′′ θ′′

0 α′′d′′−a′′β′′

A′′
4

α′′g′′−a′′γ′′
A′′

4

α′′ε′′−a′′δ′′
A′′

4

 (20)

=


A′′

4 0 0 0

0 e′′ h′′ η′′

0 f ′′ j′′′ θ′′

0 α′′d′′−a′′β′′

A′′
4

α′′g′′−a′′γ′′
A′′

4

α′′ε′′−a′′δ′′
A′′

4

 (21)

=


1 0 0 0

0 e′′ h′′ η′′

0 f ′′ j′′′ θ′′

0 α′′d′′−a′′β′′

A′′
4

α′′g′′−a′′γ′′
A′′

4

α′′ε′′−a′′δ′′
A′′

4

 (22)

≡


1 0 0 0

0 e′′′ h′′′ η′′′

0 f ′′′ j′′′ θ′′′

0 β′′′ γ′′′ δ′′′

 . (23)

The last matrix form Eq.(23) implies that, by using three 4× 4 two-level unitary matrices,

an arbitrary 4 × 4 unitary matrix U (4) is deformed to one effectively of an arbitrary 3 × 3

unitary matrix, which has just been verified to be decomposed to multiples of three 3 × 3

two-level unitary matrices.

By repeating the procedures above, an arbitrary unitary matrix with an arbitrary size

can be decomposed to multiplications of two-level unitary matrices.

We have verified that two-level unitary matrices form a universal set in quantum com-

puting.

b. set-β : CNOT operation and single-qubit unitary operation

We will verify below that an arbitrary 2n× 2n two-level unitary operator is decomposed

to multiplications of CNOT operation(s) and single-qubit unitary operations.

Start with a case of n = 1, where an arbitrary 2×2 unitary matrix is supposed to operate

on a single-qubit system or a two-component spinor, which is represented by a 1× 2 column

65

Next Generation Studies, Institute for Service Innovation Studies of Meiji University, No. 2, May 1, 2020.



matrix or vector. The corresponding two-level unitary operator to such vector is nothing

but a single-qubit unitary operation. Now, the case is verified.

Next, for a case of n=2, where an 4× 4 arbitrary unitary matrix operates on a two-qubit

system represented by a 1× 4 column matrix or vector. What should be noted first is that

there exist such 6 types of two-level unitary matrices only as follows, with each matrix being

accompanied by the two computational basis that the matrix acts non-trivially on:

Ū
(4)
1 ≡


a c 0 0

b d 0 0

0 0 1 0

0 0 0 1

 : {|00〉, |01〉}, (24)

Ū
(4)
2 ≡


a 0 c 0

0 1 0 0

b 0 d 0

0 0 0 1

 : {|00〉, |10〉}, (25)

Ū
(4)
3 ≡


a 0 0 c

0 1 0 0

0 0 1 0

b 0 0 d

 : {|00〉, |11〉}, (26)

Ū
(4)
4 ≡


1 0 0 0

0 a c 0

0 b d 0

0 0 0 1

 : {|01〉, |10〉}, (27)

Ū
(4)
5 ≡


1 0 0 0

0 a 0 c

0 0 1 0

0 b 0 c

 : {|01〉, |10〉}, (28)

Ū
(4)
6 ≡


1 0 0 0

0 1 0 0

0 0 a c

0 0 b d

 : {|10〉, |11〉}. (29)

N.B.: |vw〉, |v〉|w〉 or |v, w〉 are the abbreviated notations for tenso product |v〉⊗ |w〉, where
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|v〉 and |w〉 are vectors of inner product spaces V and W , respectively. We define U as

U ≡

a c

b d

 . (30)

To decompose the two-level unitary matrices, we use the following five procedures:

1. Translate the two computational bases that the matrix acts non-trivially on, which are

written next to the matrix above (Eq.(24) for instance), into two Gray code sequences.

Hereinafter, such two computational bases may be called the original computational

bases occasionally. Then, interpolate the two sequences with other Gray code se-

quences to make a series of the sequences, in a manner that the adjacent sequences

differ in exactly one bit.

2. Translate back the resultant sequences into the computational bases or the two-qubit

state. Now you might have new bases also that are originally not recognized as those

that the matrix acts non-trivially on. Then, read the series to determine which of the

two qubits to flip one by one to transform the basis from the initial computational basis

to one step before the final computational basis. The initial and the final computational

bases refer to the ones listed as the first and second terms of the original computational

bases, respectively. For example, |00〉 and |11〉 are the initial and the final computation

bases in case of Ū (4)
3 (Eq.(26)).

3. To execute transforming the computational basis from the initial one, carry out the

controlled flipping operation (= Controlled-X) on the qubit that is to be flipped (=

target qubit), conditional on the other qubit being in the state |0〉 (or |1〉) if this qubit

(= control qubit) should remain in |0〉 (or |1〉) before and after the operation. Repeat

this Controlled-X operation until the basis is transformed to one step before the final

computational basis (as mentioned in 2).

4. We need to do one more flipping (of either qubit) to reach the final computational basis.

To this end, carry out the controlled unitary (Controlled-U for short) operation, which

executes U operation on the target qubit, conditional on the state of the control qubit.

5. To complete the deformation, we must carry out the same flipping operations again

as have been done to reach the computational basis that will be executed with the

Controlled-U operation.
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FIG. 1. A diagram equivalent to Ū
(4)
1 . A and B represent the first and the second qubit, respectively.

Each line indicates a time-line on which time advances from left to right. At some point in time,

B is acted on with U operations, conditional on A being in the state |0〉.

Now, look at Ū (4)
1 . We follow the procedures above to interpret as a decomposition of the

Controlled-X and the Controlled-U operations. The Gray code sequences corresponding to

the original two bases are (00) and (01), and as the two sequences differ in one bit only they

have already constituted the complete Gray code series, i.e., there is no need of flipping to

do prior to the Controlled-U operation. Thus, Ū (4)
1 can be interpreted in terms of flipping

and the Controlled-U as: Simply operate the Controlled-U operation on the two-qubit state

|00〉, where do U operation on the second qubit, conditional on the first qubit being in the

state |0〉, and reach |01〉, which is the final computational basis. Now, by following the

procedures, we reach a diagram FIG. 1, which should be equivalent to Ū (4)
1 . In the diagram,

A and B represent the first and the second qubit, respectively, and each line indicates a

time-line, on which time advances from left to right. The diagram indicates how the two

qubits A and B correlate with each other in the course of time. FIG. 1 shows that at some

point in time, U operation is acted on the qubit B, conditional on the qubit A being in |0〉.

The whole circle on the time-line of the qubit A indicates that the condition imposed on the

qubit A, which is linked with U , is |0〉. If the condition on the qubit A were |1〉, the circle

would be painted in solid black. We can verify that the diagram FIG. 1 indeed represents
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FIG. 2. A diagram equivalent to FIG. 1. The white circle in FIG. 1, representing that U will be

done conditional on the qubit A being in |0〉, is replaced to a black circle that is sandwiched by

two X operations. A black circle means that the condition on the qubit A in the Controlled-U is

now the qubit A being in |1〉.

Ū
(4)
1 by reading the diagram with mathematical formulas as follows:

(|0〉〈0|)A ⊗ UB + (|1〉〈1|)B ⊗ ĨB =

1

0


A

(
1 0
)
A
⊗ UB +

0

1


A

(
0 1
)
A
⊗ ĨB (31)

=

1 0

0 0


A

⊗ UB +

0 0

0 1


A

⊗ ĨB (32)

=

UB 0

0 ĨB

 =

U 0

0 Ĩ

 =


a c 0 0

b d 0 0

0 0 1 0

0 0 0 1

 (33)

≡ Ū
(4)
1 . (34)

The next task is to try to decompose the two-qubit operation shown in the diagram into

multiplications of CNOT and single-qubit operations. The diagram FIG. 1 indeed prompts

us to re-draw it to the diagram in FIG. 2. The conditional part on the qubit A is replaced

to one with |1〉, i.e., the conventional controlled operation, by flipping the qubit A using X

operation just before the Controlled-U operation. The flipping is compensated by another

X operation just after the Controlled-U operation. We can verify that the diagram in FIG.

2 also represents Ū (4)
1 , i.e., equivalence between FIG. 1 and 2, as follows:
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FIG. 3. A diagram for the Controlled-U , by which U will act on B, conditional on the qubit A

being in |1〉.

(
XA ⊗ ĨB

)(
(|0〉〈0|)A ⊗ ĨB + (|1〉〈1|)A ⊗ UB

)(
XA ⊗ ĨB

)
(35)

=

0 1

1 0


A

⊗ ĨB

ĨB 0

0 UB

0 1

1 0


A

⊗ ĨB

 (36)

=

 0 ĨB

ĨB 0

ĨB 0

0 UB

 0 ĨB

ĨB 0

 =

UB 0

0 ĨB

 =

U 0

0 Ĩ

 ≡ Ū
(4)
1 . (37)

Now our final task here is to decompose the controlled-U operation shown in FIG. 3 (not

FIG. 1) into single qubit operations and CNOT operation. A mathematical formula for the

controlled-U (FIG. 3) is

(|0〉〈0|)A ⊗ ĨB + (|1〉〈1|)A ⊗ UB =

Ĩ 0

0 U

 . (38)

Here, the Controlled-NOT or CNOT is regarded as a special case of the Controlled-U . It is

defined as one that has X for U in the Controlled-U . The diagram of CNOT is shown in

FIG. 4 and its mathematical formula is

(|0〉〈0|)A ⊗ ĨB + (|1〉〈1|)A ⊗XB =

Ĩ 0

0 X

 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (39)

The Controlled-U (FIG. 3) is widely know to be re-drawn as in FIG. 5 by using the fact

that an arbitrary 2 × 2 unitary matrix U is decomposed as U = eiαAXBXC with three

single qubit operations A, B, and C such that ABC = Ĩ and a physically insignificant global

phase eiα. We can confirm that the RHS diagram in FIG. 5 represents the Controlled-U in
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FIG. 4. A diagram for the Controlled-NOT or CNOT operation. It is defined as a special case of

the Controlled-U in that U is specified as X.

FIG. 5. Controlled-U (FIG. 3) can be decomposed as RHS.

FIG. 3 as follows:A 0

0 A

ĨB 0

0 X

B 0

0 B

ĨB 0

0 X

C 0

0 C

ĨB 0

0 eiαĨB

 (40)

=

ABC 0

0 eiαAXBXC

 (41)

=

Ĩ 0

0 U

 . (42)

In Eq.(40), we pay attention to the order of the matrices so that it reflects the correct order in

time (as designated in FIG. 5). For example,
(
A 0
0 A

)
is put in the left-most position in Eq.(40)

because the operation comes at last in the course of time. Eq.(42) uses U = eiαAXBXC

and ABC = Ĩ[1]. FIG. 6 is an alternative diagram to represent the Controlled-U in FIG.

3. In FIG. 6 the phase operation is done on the qubit A at last in the course of time, while

it is on the qubit B at first in FIG. 5. With the diagram in FIG. 6 taken, for example, and

recalling the two X operations in FIG. 2, we finally conclude that Ū (4)
1 is decomposed to

multiplications of single qubit operations and CNOT operation (FIG. 7).

Next, look at Ū (4)
2 . The Gray code sequences corresponding to the original two compu-

tational bases |00〉 and |10〉 are (00) and (10); therefore, as is the case with Ū
(4)
1 , there is

no need to inset other Gray code sequences between (00) and (10). Thus, the diagram that

71

Next Generation Studies, Institute for Service Innovation Studies of Meiji University, No. 2, May 1, 2020.



FIG. 6. An alternative diagram for the Controlled-U in FIG. 3. A position of the phase operation

differs from FIG. 5.

FIG. 7. The eventual diagram to represent Ū
(4)
1 . The two-qubit operation shown in FIG. 6 is

sandwiched by two X operations to complete Ū
(4)
1 and ABC = Ĩ.

corresponds to Ū (4)
2 is shown in FIG. 8, where Controlled-U operation is acted on the qubit

A, conditional on the qubit B being in the state |0〉. The validity of the diagram is verified

FIG. 8. A diagram to represent Ū
(4)
2 . Controlled-U operation is acted on the qubit A, conditional

on the qubit B being in the state |0〉.
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by

UA ⊗ (|0〉〈0|)B + ĨA ⊗ (|1〉〈1|)B (43)

=

a c

b d


A

⊗

1 0

0 0


B

+

1 0

0 1


A

⊗

0 0

0 1


B

(44)

=


a 0 c 0

0 0 0 0

b 0 d 0

0 0 0 0

+


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 =


a 0 c 0

0 1 0 0

b 0 d 0

0 0 0 1

 = Ū
(4)
2 . (45)

The basic strategy to further decompose the two-qubit operation in FIG. 8 is to deform

it to have the Controlled-U operation such that it operates U on the qubit B, conditional

on the qubit A being in |1〉. Once we extract such Controlled-U in FIG. 3, the section

will be decomposed to the composite two-qubit operation in FIG. 5 or FIG. 6. Following

the strategy, we deform the diagram in FIG. 8 to ones shown in FIG. 9. In the left-most

diagram, a white circle has been replaced with a black one, to change the condition on

the qubit B from |0〉 to |1〉, to become the inverted Controlled-U . In the middle diagram,

the inverted Controlled-U has been inverted (= upside down) between the two qubits by

using two swapping operations, to become the conventional controlled-U in FIG. 3. In the

right-most diagram, each swapping operation is replaced with a composite of two CNOT

gates and an inverted CNOT operation. The double oblique lines in the right-most diagram

means that a mirrored structure excluding the Controlled-U should come beyond the lines.

The decomposition of the swap gate is verified as

Ĩ 0

0 X



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


Ĩ 0

0 X

 (46)
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FIG. 9. Ū
(4)
2 in FIG. 8 is deformed further step by step. The original Ū

(4)
2 has been deformed

in the left-most diagram using two X gates to replace a white circle to a black one. Then, the

inverted Controlled-U has been deformed in the middle diagram using two swap gates to have the

conventional Controlled-U . In the right-most diagram, each swap gate is replaced with a composite

of two CNOT and one inverted CNOT. The double oblique lines means that a mirrored structure

excluding the Controlled-U should come beyond the lines.

, where the middle matrix, the inverted CNOT, is obtained as

ĨA ⊗ (|0〉〈0|)B +XA ⊗ (|1〉〈1|)B (47)

=

1 0

0 1


A

⊗

1 0

0 0


B

+

0 1

1 0


A

⊗

0 0

0 1


B

(48)

=


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

+


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 (49)

The inverted CNOT is replaced to a composite of four Hadamard gates and one CNOT

(FIG. 10), and the validity is verified as

(
ĨA ⊗ H̃B

)(
H̃A ⊗ ĨB

)Ĩ 0

0 X

(H̃A ⊗ ĨB

)(
ĨA ⊗ H̃B

)
(50)

=

H̃B 0

0 H̃B

 1√
2

ĨB ĨB

ĨB −ĨB

Ĩ 0

0 X

 1√
2

ĨB ĨB

ĨB −ĨB

H̃B 0

0 H̃B

 (51)

=


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 . (52)

Thus, with the results in FIG. 9 and FIG. 10 and the decomposition of the Controlled-U
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FIG. 10. The inverted CNOT gate is replaced to a composite of four Hadamard gates and one

CNOT gate.

FIG. 11. Ū
(4)
2 is decomposed to multiplications of single qubit gates –X, H̃,A,B,C, phase – and

CNOT gates, where ABC = Ĩ.

(FIG. 6), we verify that Ū (4)
2 is decomposed to multiplications of single qubit operations –

X, H̃,A,B,C, phase – and CNOT operations (FIG. 11). The double oblique lines in FIG.

11 means that a mirrored structure excluding a composite for the Controlled-U should come

beyond the lines.

Next, look at Ū (4)
3 . With (00) and (11) being the two Gray code sequences that corre-

spond to the initial and final computational basis of the original bases, we must interpolate

another Gray code sequence (01) between them. Using these three Gray code sequences,

we can draw in FIG. 12 the diagram for Ū (4)
3 . The left-most operation is the white-circle

CNOT, defined in Eq. (53), by which the computational basis |00〉 is transformed to |01〉.

The middle operation in FIG. 12 is the inverted Controlled-U , by which the qubit A is acted

on with U, conditional on the qubit B being in the state |1〉. Finally, another white-circle

CNOT is done on the two-qubit state to compensate the flipping that has been done at first.

(|0〉〈0|)A ⊗XB + (|1〉〈1|)A ⊗ ĨB =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 (53)

By using the various replacements mentioned above, the diagram for Ū (4)
3 is further deformed
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FIG. 12. A diagram to represent Ū
(4)
3 , according to the three Gray code sequences (00), (01),

and (11). The last operation, the white-circle CNOT, following the inverted Controlled-U , is to

compensate the flipping operation that has been done at first.

FIG. 13. The eventual diagram to represent Ū
(4)
3 . By using various equivalent deformations, it

becomes made up of single qubit operations – X, H̃,A,B,C, and phase – and CNOT operations,

where ABC = Ĩ.

so that it contains only single qubit operations and CNOT operations (FIG. 13). In FIG.

13, the white-circle CNOT has been deformed using two flipping operations on the qubit

A, so that this section comprises the conventional CNOT. Then, a swapping between the

qubit A and the qubit B is carried out, so that the inverted Controlled-U is converted to

the conventional Controlled-U . And the swapping is decomposed following FIG. 10. The

Controlled-U is decomposed following FIG. 6. The double oblique lines in FIG. 13 means

that a mirrored structure excluding a composite for the Controlled-U should come beyond

the lines.

For the rest of 2 × 2 two-level unitary matrices and all other two-level unitary matrices

with larger size, we can verify that they are all decomposed to multiplications of single-

qubit operations and CNOT operations by following exactly the similar procedures to those

explained above.

Recalling that an arbitrary unitary matrix with arbitrary size is decomposed to two-
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level unitary matrices, we have just shown that CNOT operator and single-qubit operator

constitute a universal set of gates in quantum computing.

c. set-γ : CNOT operation, Hadamard operation, and “the π/8 operation”

It has just been verified that an arbitrary unitary operator with arbitrary size is de-

composed to multiplications of CNOT operation and single-qubit operation. That is, these

operators constitute a universal set of gates in quantum computing. Now that, what to do

next is to try to further decompose the universal operators and reach the ultimate universal

set by limiting the variety of the single-qubit operations. We will see that the single-qubit

operations are actually limited to those that are called the “π/8 gate” (or T gate for short)

regarding z-axis and the Hadamard gate H̃. More precisely, an arbitrary single-qubit oper-

ation is approximated using H̃ and the “π/8 gate” to arbitrary accuracy. Here, it should be

noted that the “π/8 gate” is not coming from π/8 but π/4 rotation around z-axis.

It is useful to recall a notion of a quantum mechanical rotation following the notations

in [1, 6]. An operator that rotates a 2-component spinor around a unit vector l̂ = (lx, ly, lz)

by φ is written as:

Rl̂ (φ) = exp

(
−i~σ · l̂

2
φ

)
= Ĩ cos

φ

2
− i
(
~σ · l̂

)
sin

φ

2
(54)

=

 cos φ
2
− iz sin

φ
2

(−ilx − ly) sin
φ
2

(−ilx + ly) sin
φ
2

cos φ
2
+ iz sin

φ
2

 , (55)

where ~σ ≡ (σx, σy, σz). These three components σx, σy, σz are called the Pauli matrices

whose specific forms are

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (56)

The σx, σy, and σz are designated as X,Y, and Z occasionally in this writing. The rotation

operators around x−, y−, and z−axes become

Rx (φ) = exp
(
−iσx

2
φ
)
=

 cos φ
2

−i sin φ
2

−i sin φ
2

cos φ
2

 , (57)

Ry (φ) = exp
(
−iσy

2
φ
)
=

cos φ
2
− sin φ

2

sin φ
2

cos φ
2

 , (58)

Rz (φ) = exp
(
−iσz

2
φ
)
=

e−iφ2 0

0 e+i
φ
2

 . (59)
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Take U as the operator that you want to implement and V as the one that is actually

implemented instead of U . That you want to approximate U to V to arbitrary accuracy

means that the error, E(U, V ), that is defined in Eq.(60) becomes negligibly small [1, 10]:

E(U, V ) ≡ maxψ|| (U − V )) |ψ〉|| = maxψ
(
2− 〈ψ|

(
V †U + U †V

)
|ψ〉
)
, (60)

where maxψ means that we will use |ψ〉 such that the argument of maxψ becomes maximum

and || |Ψ〉|| is the norm of a vector |Ψ〉, i.e., || |Ψ〉|| ≡
√

〈Ψ|Ψ〉.

We derive two relations with respect to “π/8 operator” (or T operator for short), which

are

e−i
π
8 T ≡ e−i

π
8

1 0

0 ei
π
4

 =

e−iπ8 0

0 ei
π
8

 = e−i
Z
2

π
4 = Rz

(π
4

)
, (61)

e−i
π
8 H̃T H̃ =

1√
2

1 1

1 −1

e−iπ8 0

0 ei
π
8

 1√
2

1 1

1 −1

 = e−i
X
2

π
4 = Rx

(π
4

)
. (62)

Multiply both formulae, to have

e−i
π
8 Te−i

π
8 H̃T H̃ = Rz

(π
4

)
Rx

(π
4

)
= e−i

Z
2

π
4 e−i

X
2

π
4 (63)

=
(
Ĩ cos

π

8
− iZ sin

π

8

)(
Ĩ cos

π

8
− iX sin

π

8

)
(64)

= Ĩ cos2
π

8
+ sin

π

8

(
−iZ cos

π

8
− iX cos

π

8
− ZX sin

π

8

)
(65)

= Ĩ cos2
π

8
− i

(
cos π

8√
1 + cos2 π

8

X +
sin π

8√
1 + cos2 π

8

Y +
cos π

8√
1 + cos2 π

8

Z

)√
1− cos4

π

8
(66)

≡ Rn̂ (θ) . (67)

By comparing the expression Eq.(66) and Eq.(54), we understand that e−iπ8 Te−iπ8 H̃T H̃ is

equivalent to a rotation (defined as Rn̂ (θ)) around a certain unit vector n̂ defined as

n̂ =

(
cos π

8√
1 + cos2 π

8

,
sin π

8√
1 + cos2 π

8

,
cos π

8√
1 + cos2 π

8

)
, (68)

and by a certain angle of θ such that

cos
θ

2
= cos2

π

8
. (69)

Next, we detail how repeated iteration of Rn̂ (θ) can be used to approximate to arbitrary

accuracy a rotation operator Rn̂ (α) that rotates a two-component spinor around the same

78

『次世代研究』, 明治大学サービス創新研究所, No. 2, 2020年5月1日.



vector n̂ as in Rn̂ (θ) by an arbitrary angle of α. Let δ > 0 be the desired accuracy, and

let N be an integer such that N > 2π/δ. Define θk (k = 1, 2, . . . , N) so that θk ∈ [0, 2π}

and θk ≡ kθ mod 2π. Then we can say that there are distinct j and k (1, 2, . . . , N) such

that |θk − θj| ≤ 2π/N < δ. This derivation is due to the pigeonhole principle or Dirichlet’s

box principle [11, 12]. Imagine a circle of a radius of 1 and divide its circumference by N ,

so that we have now N pigeonholes, each of which has an arc of 2π/N . Here, the principle

states that if n items are put into m containers, with n > m, then at least one container

must contain more than one item[12]. Under the principle, we can deduce that each arc

2π/N “contains” an angle θk one by one, or at least one arc must contain more than one

angle. This proves that |θk− θj| ≤ 2π/N for distinct k and j. Without loss of generality, we

can assume that k > j, and we can choose k and j such that |θk−j| ≡ |θk− θj| mod 2π < δ.

Since k 6= j, and θ is an irrational mulitiple of 2π (∵ cos θ
2
= cos2 π

8
), θk−j 6= 0. It follows

that the interaval [0, 2π} is filled up by θl(k−j) as l is varied. All the adjacent members of

θl(k−j) are no more than δ apart.

A quick reminder: Rn̂ (α) is the target operator that rotates a two-component spinor in

3D space around a certain unit vector n̂ by an arbitrary angle of α while Rn̂ (θ0α) is the

operator that we actually implement, aiming to approximate Rn̂ (α). Rn̂ (θ0α) rotates a state

around the same vector n̂ but its rotation angle is a multiple of a certain angle of θ such

that cos θ
2
= cos2 π

8
. The angle θ0α is one that is carefully chosen with ε (< δ) as

θ0α ≡ θl0α(k−j) ≡ l0α(k − j)θ mod 2π (70)

|θ0α − α| = ε < δ. (71)

Thus, the error E (Rn̂ (α) , Rn̂ (θ0α)) is evaluated as
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maxψ
(
2− 〈ψ|R†

n̂ (θ0α)Rn̂ (α) +R†
n̂ (α)Rn̂ (θ0α) |ψ〉

)
(72)

= maxψ
(
2− 〈ψ|[ei

~σ
2
·n̂(l0α(k−j)θ)e−i

~σ
2
·n̂α + ei

~σ
2
·n̂αe−i

~σ
2
·n̂(l0α(k−j)θ)]|ψ〉

)
(73)

= maxψ
(
2− 〈ψ|[ei

~σ
2
·n̂(l0α(k−j)θ−α) + e−i

~σ
2
·n̂(l0α(k−j)θ−α)]|ψ〉

)
(74)

= maxψ
(
2− 〈ψ|2 cos[~σ · n̂

2
(l0α(k − j)θ − α)]|ψ〉

)
(75)

= maxψ
(
2− 2〈ψ| cos ~σ · n̂

2
ε|ψ〉

)
(76)

= maxψ
(
2− 2〈ψ| cos ε

2
|ψ〉
)

(77)

= 2(1− cos
ε

2
) ≤ ε. (78)

See appendices A and B for the derivations of Eq.(77) and Eq.(78). We have managed to

approximate Rn̂ (α) to the operator having the common rotation vector n̂ but a different

rotation angle, to arbitrary accuracy. Next, in turn we will see that Rn̂ (α) is replaced, using

Hadamard gate H̃, with another rotation operator Rm̂ (α) that has the common rotation

angle α but a different rotation vector m̂. With
√
1 + cos2 π

8
≡ P,

√
1− cos4 π

8
≡ Q,

H̃Rn̂ (α) H̃ (79)

=
1√
2
(X + Z)

(
Ĩ cos2

π

8
− i

(
cos π

8

P
(X + Z) +

sin π
8

P
Y

)
Q

)
1√
2
(X + Z) (80)

=
1

2

(
2Î cos2

π

8
− i

(
cos π

8

P
2Î(X + Z) +

sin π
8

P
(X + Z)Y (X + Z)

)
Q

)
(81)

= Î cos2
π

8
− i

(
cos π

8√
1 + cos2 π

8

(X + Z)−
sin π

8√
1 + cos2 π

8

Y

)√
1− cos4

π

8
(82)

≡ Rm̂ (α) (83)

The following identity equation for Pauli matrices is used to derive Eq.(82)(See appendix

C):

(X + Z)Y (X + Z) = −2Y (84)

Eq.(82) shows that H̃Rn̂ (α) H̃ can be interpreted as a rotation operator Rm̂ (α) such that

a two-component spinor is rotated by α around m̂ defined as

m̂ =

(
cos π

8√
1 + cos2 π

8

,−
sin π

8√
1 + cos2 π

8

,
cos π

8√
1 + cos2 π

8

)
. (85)
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Since n̂ and m̂ are linearly independent, we can decompose an arbitrary single-qubit unitary

operator U using Rn̂ and Rm̂ [1] as:

U = eiτRn̂(β)Rm̂(γ)Rn̂(η), (86)

using certain three angles β, γ, and η, and eiτ is a physically insignificant global phase.

Finally, we can verify that U is approximated to arbitrary accuracy using “π/8 gate”

(or T gate for short) and Hadamard gate H̃. U is the target operator which we want to

implement and is specified with three angles β, γ, and η, and certain two unit vectors n̂ and

m̂. On the other hand, we can actually implement Rn̂(θ0β), Rn̂(θ0γ), Rn̂(θ0η), and H̃, and

we construct a composite operator V as

V ≡ Rn̂(θ0β)H̃Rn̂(θ0γ)H̃Rn̂(θ0η). (87)

Now let us evaluate the error E(U, V ) with eiτ in U being dropped:

E
(
Rn̂(β)Rm̂(γ)Rn̂(η), Rn̂(θ0β)H̃Rn̂(θ0γ)HRn̂(θ0η)

)
(88)

= E (Rn̂(β)Rm̂(γ)Rn̂(η), Rn̂(θ0β)Rm̂(θ0γ)Rn̂(θ0η)) (89)

≤ E (Rn̂(β), Rn̂(θ0β)) + E (Rn̂(γ), Rn̂(θ0γ)) + E (Rn̂(η), Rn̂(θ0η)) (90)

≤ 3ε, (91)

where a widely-known mathematical theorem [1] is used for the derivation from Eq.(89) to

Eq.(90). Recalling that Rn̂(θ0β), Rn̂(θ0γ), and Rn̂(θ0η) are all made up of “π/8 gate” and H̃,

V is decomposed to multiplications of “π/8 gate” and H̃. Thus, an arbitrary single-qubit

unitary operator U is approximated to arbitrary accuracy to decompositions of “π/8 gate”

and H̃. Therefore, by combining the fact that an arbitrary unitary operator with arbitrary

size is decomposed to multiplication of CNOT and single-qubit unitary operator (mentioned

in II A 3 b), we verify that CNOT, H̃ and “π/8 gate around z-axis” constitute a universal

set of gates in quantum computing. Also, through the discussions in II A 3 a, II A 3 b, and

II A 3 c, it is fair to say that the universal set of gates comprising CNOT, H̃ and “π/8 gate

around z-axis” is the ultimate universal set of gates in quantum computing.

4. Examination of our potential computer’s universality in quantum computing

We examine to what extent our potential computer under construction could be “uni-

versal.” To this end, we compare the ultimate universal set of gates and our gates under
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construction. The ultimate set is taken here among other universal ones because it is con-

stituted by most simplified, i.e., most universal, gates.

Our gates under construction are Rx(φ), Ry(φ), Rz(φ) [1, 6], and Controlled-Z (CPHASE

or UCZ for short) [13, 14] defined as:

Rx (φ) =

 cos φ
2

−i sin φ
2

−i sin φ
2

cos φ
2

 , (92)

Ry (φ) =

cos φ
2
− sin φ

2

sin φ
2

cos φ
2

 , (93)

Rz (φ) =

e−iφ2 0

0 e+i
φ
2

 , (94)

UCZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (95)

Our gate set above will be equivalent to the ultimate set of gates if Rx(φ), Ry(φ), and Rz(φ)

are available with φ = ±π
2
, π
4
, π. And in fact these rotation operators are available under

precise experimental conditions. Thus, the author observes that ours constitute the universal

set of gates in quantum computing. The details of how to replace (=construct) each member

of the ultimate set of gates with ours are described as follows:

• For the Hadamard gate H̃

H̃ is decomposed into various forms using rotation operators: Rx(φ), Ry(φ), and Rz(φ).

H̃ = Rx(π)e
i 3π

4 Ry(
π

2
) = ei

π
4Ry(−

π

2
)Rx(π) = Rz(π)e

iπ
4Ry(−

π

2
) (96)

= ei
3π
4 Ry(

π

2
)Rz(π) = e−i

π
2Rx(−

π

2
)Rz(−

π

2
)Rx(−

π

2
) (97)

= ei
3π
2 Ry(

π

4
)Rx(π)Ry(−

π

4
)Rz(−

π

2
)Rx(π)Rz(

π

2
) (98)

• For “the π/8 gate” (or T gate for short)

T can be prepared directly from Rz

(
π
4

)
.

ei
π
8Rz

(π
4

)
≡ T. (99)

82

『次世代研究』, 明治大学サービス創新研究所, No. 2, 2020年5月1日.



FIG. 14. The left diagram H̃BUCZH̃B is equivalent to CNOT on the right. The proof is given in

the text.

• For the CNOT gate (or UCN for short)

Using H̃ above, UCN is decomposed to H̃ and UCZ as follows:

H̃BUCZH̃B =
(
ĨA ⊗ H̃B

)
UCZ

(
ĨA ⊗ H̃B

)
(100)

=

H̃B 0

0 H̃B



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


H̃B 0

0 H̃B

 (101)

=
1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


1√
2


1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

 (102)

=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ≡ UCN (103)

This replacement may be drawn in FIG. 14.

B. Quantum advantage of our potential computer

The author attempts to assess to what extent our potential computer under construction

could be useful from a viewpoint of its availability to solve a real problem. The problem

given here is known as one that can be solved in much less steps than usual if the computer

implements so-called the Deutsch-Jozsa algorithm[2]. To implement DJA, the multi-qubit,

say n, Hadamard gate H̃⊗n is required, where H̃ cannot be implemented unless it is a
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Uf

|y〉

|x〉 |x〉

|y ⊕ f(x)〉

n

FIG. 15. A schematic diagram to represent the problem to solve. Through a black box (or oracle)

Uf , the two inputs, |x〉 and |y〉, are processed to provide two outputs, |x〉 and |y ⊕ f(x)〉, where

x ∈ {0, 1}n, y ∈ {0, 1}.

quantum computer. Thus, it is fair to claim that a quantum computer that H(n) can be

implemented on is useful in that it is ready to exhibit so-called quantum advantage over

classical computers. In the preceding, the author defines the problem to solve and explain

how DJA works to help to accelerate problem-solving by following the procedures in [3, 15],

and examines the availability of DJA on our potential computer.

1. Definition of the problem to solve

Let x be some n-bit sequence and let y be either 0 or 1, i.e., x ∈ {0, 1}n, y ∈ {0, 1}. Now

imagine a black box (or “an oracle” in a computer glossary) Uf such that

Uf |x, y〉 = |x, y ⊕ f(x)〉, (104)

where f(x) takes one of the following two characteristics:

1. f(x) is a constant function: the value of f(x) is either 0 or 1 for all arguments x’s

(=n-bit sequences).

2. f(x) is a balanced function: the value of f(x) is 0 for 50% of all the possible arguments

x’s or 1 for the rest (= 50%) of the possible arguments.

When Uf is given, decide which of the two characteristics has been given to f(x). Here

“When Uf is given” means that we are allowed to know of as many sets of {|x, y〉, |x, y⊕f(x)〉}

as we want upon our request. The problem may be drawn in the diagram in FIG. 15.
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FIG. 16. A diagram to represent a solution to the problem using the Deutsch-Joza algorithm. We

set an input state |x〉 as |000 · · · 0〉, set another input state |y〉 as |y〉 = 1√
2
(|0〉 − |1〉), and measure

the first n-qubit of the output state. This diagram is taken from [3].

2. How the Deutsch-Jozsa algorithm enables us to solve it in less steps

a. Classical approach to the problem Before introducing the Deutsch-Jozsa algorithm,

let us take a look at how to solve it in a classical manner. How many trials are needed to

decide the characteristics of f(x)? In other words, how many times do we need to carry

out Uf operation? Consider it depending on the answer. In case that f(x) has been set

“balanced”, the minimum number of necessary trial is 2 if we are lucky. For if the first

output is different from the second one, this means that f(x) is not “constant” and this

implies that f(x) is “balanced.” On the other hand, the maximum number of necessary trial

is 22

2
+ 1. The total number of different sequences is 2n, and we cannot be sure that f(x) is

“balanced” until we try half of the input arguments plus one extra trial. In case that f(x)

has been set “constant”, the necessary number of trial of Uf is always 22

2
+ 1. As is the

case of “balanced”, we cannot be sure that f(x) is “constant” until we try half of the input

arguments plus one extra trail.

Remind that even if the ket representation like |x, y〉 is used, this does not necessarily

mean that the problem is being treated in quantum mechanically. In fact, we have just

treated it completely classically.

b. The Deutsch-Jozsa algorithm The author will see how to handle the problem by

exploiting the concepts in quantum mechanics. First, the quantum mechanical solution to

it is represented in a form of diagram in FIG. 16, following which the solution is explained

below.
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For a n-qubit state |a〉;

|a〉 ≡ |a0〉 ⊗ |a1〉 ⊗ |a2〉 ⊗ |a1〉 ⊗ · · · ⊗ |an−1〉, (105)

we apply the n-qubit Hadamard gate H̃⊗n, i.e.,

H̃⊗n = H̃0|a0〉 ⊗ H̃1|a1〉 ⊗ H̃2|a2〉 ⊗ · · · ⊗ H̃n−1|an−1〉, (106)

where

H̃s|as〉 =

 1√
2
(|0〉s + |1〉s) (for as = 0)

1√
2
(|0〉s − |1〉s) (for as = 1)

. (107)

A target is to deform RHS of Eq.(106) for a n-qubit state. In preparation for it, let us

examine a case of a state comprising a smaller number of qubits, 4, for example, and |a〉 ≡

|1〉0 ⊗ |0〉1 ⊗ |1〉2 ⊗ |1〉3. For this |a〉, H̃⊗4|a〉 leads to,

1√
2
(|0〉0 − |1〉0)⊗

1√
2
(|1〉1 + |1〉1)⊗

1√
2
(|0〉2 − |1〉2)⊗

1√
2
(|0〉3 − |1〉3) (108)

=
1√
24
(|0〉0|0〉1|0〉2|0〉3 − |0〉0|0〉1|0〉2|1〉3 + |0〉0|0〉1|1〉2|1〉3 · · · − |1〉0|1〉1|1〉2|1〉3), (109)

where |x〉0⊗|x〉1⊗|x〉2⊗|x〉3 ≡ |x〉0|x〉1|x〉2|x〉3 ≡ |x0x1x2x3〉. Here, the sign of each term is

determined as follows: |x〉0 = |0〉0 comes from either |a0〉 = |0〉0 or |1〉0. Recalling Eq.(107),

whichever between |0〉0 and |1〉0 produces |x〉0, |x〉0 does not come with (−1). On the other

hand, despite |x〉0 = |1〉0 comes from either |a0〉 = |0〉0 or |1〉0, |x〉0 = |1〉0 does actually

come with (−1) when being produced from |a0〉 = |1〉1. That is, |xk〉 comes with (−1) if and

only if (ak = 1)&(xk = 1). Therefore, for a term |x0x1x2x3〉, (−1) is put on top of it if and

only if
∑3

k=0 xkak is odd. Using the observation above, the n-qubit Hadamard operation on

|a〉 leads to

H̃⊗n|a〉 = 1√
2n

∑
x′∈{0,1}n

(−1)
∑n

i=0 xiai|x′〉 (110)

In our case, following the FIG. 16, we take the input |x〉 such that

|a〉 ≡ |000 · · · 0〉 (111)

, to have

H̃⊗n|a〉 = 1√
2n

∑
x′∈{0,1}n

|x′〉. (112)

Also, take |y〉 as

|y〉 = 1√
2
(|0〉 − |1〉) . (113)
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Thus, we have Uf |x, y〉 as

Uf |x, y〉 = |x, y ⊕ f(x)〉 = 1√
2n

|
∑

x′∈{0,1}n
|x′〉, 1√

2
(|0〉 − |1〉)⊕ f(x′)〉 (114)

=
1√
2n+1

∑
x′∈{0,1}n

(|x′〉 (|0⊕ f(x′)〉 − |1⊕ f(x′)〉)) (115)

=
1√
2n+1

∑
x′∈{0,1}n

(
(−1)f(x

′)|x′〉 (|0〉 − |1〉)
)
. (116)

Here, the following relation was used:

|0⊕ f(x′)〉 − |1⊕ f(x′)〉 =

 (|0〉 − |1〉 (for f(x′) = 0)

(|1〉 − |0〉 (for f(x′) = 1)
. (117)

Eq.116 surprises us that the information of f(x), which is originally expected to affect y,

appears as (−1)f(x
′). Thus, with Eq.116, we drop the (n + 1)th term and take the first n

terms only, to obtain
1√
2n

∑
x′∈{0,1}n

(−1)f(x
′)|x′〉. (118)

We remind that this state in Eq.118 is the one that comes out from the black box Uf .

Then, let us apply H̃⊗n again on the state in Eq.118 and we will obtain

H̃⊗n

 1√
2n

∑
x′∈{0,1}n

(−1)f(x
′)|x′〉

 =
1√
2n

∑
x′∈{0,1}n

(−1)f(x
′)H̃⊗n|x′〉 (119)

=
1√
2n

∑
x′∈{0,1}n

(−1)f(x
′)

 1√
2n

∑
Z∈{0,1}n

(−1)
∑n

i=0 x
′
iZi|Z〉

 (120)

=
1

2n

∑
x′∈{0,1}n

∑
Z∈{0,1}n

(−1)f(x
′)+

∑n
i=0 x

′
iZi|Z〉 (121)

=
1

2n

∑
x′∈{0,1}n

∑
Z∈{0,1}n

(−1)f(x
′)⊕Z·x′|Z〉. (122)

The last form Eq.122 implies that the probability amplitude for some |Z〉 is
1√
2n

∑
x′∈{0,1}n

(−1)f(x
′)⊕Z·x′ . (123)

Now, let us calculate the probability amplitude for |Z〉 = |000 · · · 0〉. The square of the

absolute value of the amplitude correspond to the probability of |000 · · · 0〉 being measured

when we measure the output state. The probability amplitude is found out to be
1√
2n

∑
x′∈{0,1}n

(−1)f(x
′)⊕Z·x′ =

1√
2n

∑
x′∈{0,1}n

(−1)f(x
′). (124)
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This form means that the probability amplitude for |Z〉 = |000 · · · 0〉 is simply classified

depending on the characteristics of f(x) into,
1 (if f(x) = 0)

−1 (if f(x) = 1)

0 (otherwise)

. (125)

That is, if f(x) is “constant”, all time we measure the output, |000 · · · 0〉 is measured, while

if f(x) is “balanced”, we will never measure |000 · · · 0〉. In brief, with DJA, we can solve the

problem instantly by following the procedures in the diagram in FIG. 16, where we set an

input state |x〉 as |000 · · · 0〉, set another input state |y〉 as |y〉 = 1√
2
(|0〉 − |1〉), and measure

the first n-qubit of the output state.

3. Examination of the availability of DJA on our potential computer

We examine the availability of DJA on our potential computer under construction. As

seen above, the point is whether it implements the n-qubit Hadamard gate H̃⊗n or not.

As discussed in II A 4 above, the Hadamard gate H̃ is available on our potential computer

under the circumstances where we can prepare Rx(φ), Ry(φ), and Rz(φ) with φ = ±π
2
,±π

4
,

and π. Thus, our potential computer can implement the Deutsch-Jozsa algorithm that can

be implemented on a universal quantum computer only. This implies that ours is ready

to exhibit the quantum advantage that quantum computer has, in that DJA enables it

to solve some certain problem in much less steps than classical computing. What should

also be pointed out is the preparation of the multiple qubit version of H̃ is critical for the

implementation of DJA.

III. SUMMARY AND FUTURE ISSUES

We can confirm that our gate set is equivalent to the ultimate universal set of gates

in quantum computing in that each members of the ultimate set proves to be constructed

using appropriate multiplications of the members of ours. The availability of the ultimate set

makes it possible to construct an arbitrary unitary matrix, the key to implement a universal

quantum computer; thus, our potential computer proves to be universal. The Hadamard

gate H̃, the vital gate in quantum information processing, can be constructed using our
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three single-qubit rotation operators Rx(φ), Ry(φ), and Rz(φ) with the rotation angles of

φ = ±π
2
,±π

4
, and π. We can also confirm that our potential computer can implement the

Deutsch-Jozsa algorithm using our computer’s universality. DJA makes it possible to solve

a certain problem in much less steps than classical computing; thus, our potential computer

is confirmed to possess quantum advantage.

We must tackle plenty of outstanding issues in the frame work of mathematical physics,

following the basic work in this article. From an aspect of a QIP algorithm, important and

urgent issues include a discovery of a new problem that is soluble on a quantum computer,

the development of an efficient QIP code for either a well-known problem or a new problem,

and the development of an error correction code [16–18], with keeping the compatibility with

the physical characteristics of the computer. From an aspect of materials physics, helping

to design QIP physical implementation from a quantum dynamical approach is among the

issues required. It might be a good idea to start it from analysing some specific structures

that are aimed to work as single-qubit gates, i.e.,Rx(φ), Ry(φ), and Rz(φ), and the two-

qubit gate, i.e., the CPHASE gate, by numerically calculating the time evolution of the

quantum states (See [19] for calculating a time evolution of quantum wave packet). How the

states deform as times goes by will provide information about various limiting performances,

including the maximum time limit for the structures to function appropriately as quantum

gates. Apart from above, we might have to examine the predictions that distinct two-level

quantum state can no longer be available in some extreme conditions[20–23].

Appendix A: Derivation of Eq.(77)

Pauli matrices ~σ ≡ (σx, σy, σz) satisfy the following identity equation for an odd number

m for an arbitrary unit vector p̂ [6],

(~σ · p̂)m ≡ 1. (A1)

Appendix B: Derivation of Eq.(78)

We derive sin2 x ≤ x using a concrete example. We compare two areas inside a circle

of radius 1 with common angle x (0 < x < π
2
) (FIG. 17). One is a sector S1 of radius

1: S1 = π · 12 × x
2π

= x
2
. The other is a triangle S2 that has base 1 and height sinx:
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FIG. 17. A sector of a circle of radius 1 and angle x.

S2 = 1 · sin(x)× 1
2
= sinx

2
. By construction, S2 ≤ S1, i.e.,

sinx

2
≤ x

2
, (B1)

thus

sinx ≤ x. (B2)

Combining Eq.(B2) with

sinx ≤ 1, (B3)

we have

2 sin2 x ≤ 2x. (B4)

On the other hand, with ε/2 ≡ 2x,

1− cos
ε

2
= 1− cos 2x = 2 sin2 x. (B5)

Using Eq.(B4) and Eq.(B5), we reach

2
(
1− cos

ε

2

)
≤ ε. (B6)

Appendix C: Derivation of Eq.(82)

Using the commutation and anti-commutation relations among Pauli matrices σx(≡

X), σy(≡ Y ), σz(≡ Z):

[X,Y ] = 2iZ, (C1)

{X,Y } = 0, (C2)
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we have

(X + Z)Y (X + Z) = XYX + ZY X +XY Z + ZY Z (C3)

= (iZ)X + Z(−iZ) + (iZ)Z + Z(iX) (C4)

= −ZX − iZ2 + iZ2 + iZX (C5)

= 2iZX = 2i(iY ) = −2Y. (C6)
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